Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Res Int ; 182: 114142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519160

ABSTRACT

Drying is a necessary step in the microalgae production chain to reduce microbial load and oxidative degradation of the end product. Depending on the differences in applied temperature and treatment time, the process of drying can have a substantial impact on protein quality and aroma, important characteristics determining the incorporation potential in food products. In this study, we compared the drying of heterotrophic Chorella vulgaris with both innovative (agitated thin film drying (ATFD), pulse combustion drying (PCD) and solar drying (SolD)) and commonly used drying techniques (spray drying (SprD) and freeze drying (FD)). To evaluate the impact on protein quality, we evaluated techno-functional properties, in vitro digestibility (INFOGEST) as well as protein denaturation using differential scanning calorimetry (DSC). A sensory analysis was performed by a trained expert panel, combined with headspace solid-phase microextraction (HS-SPME) - gas chromatography-mass spectrometry (GC-MS) to determine volatile organic compounds (VOCs). ATFD was found to increase techno-functional properties such as gelling, water holding and solubility as well as in vitro protein digestibility. These observations could be related to induced cell disruption and protein denaturation by ATFD. Sensory analysis indicated an increased earthy off-flavor after ATFD. Interestingly, the high-temperature PCD led to an increase in cacao odor while low-temperature FD resulted in lower flavor, odors and VOCs. These results demonstrate that protein quality and sensorial properties of C. vulgaris can be steered through the type of drying, which could help in the selection of application-specific drying methods. Overall, this work could promote the incorporation of microalgal single cell proteins in different innovative food products.


Subject(s)
Chlorella vulgaris , Microalgae , Volatile Organic Compounds , Desiccation , Freeze Drying , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Volatile Organic Compounds/analysis
2.
J Exp Bot ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412416

ABSTRACT

The oxidative pentose-phosphate pathway (OPPP) retrieves NADPH from glucose-6-phosphate, which is important in chloroplasts at night and in plastids of heterotrophic tissues. We previously studied how OPPP enzymes may transiently locate to peroxisomes, but how this is achieved for the 3rd enzyme remained unclear. By extending our genetic approach, we could demonstrate that Arabidopsis isoform 6-phosphogluconate dehydrogenase 2 (PGD2) is indispensable in peroxisomes during fertilization, and then studied why all PGD-reporter fusions show a mostly cytosolic pattern. Previously published interaction of a plant PGD with thioredoxin m was confirmed using Trxm2 for yeast-2-hybrid (Y2H) and bimolecular fluorescent complementation (BiFC) assays, and medial reporter fusions (with both ends accessible) turned out to be beneficial for studying peroxisomal targeting of PGD2. Of special importance were phosphomimetic changes at Thr6, resulting in a clear targeting switch to peroxisomes, while a similar change at position Ser7 in PGD1 conferred plastid import. Apparently, efficient subcellular localization can be achieved by activating an unknown kinase, either early after or during translation. N-terminal phosphorylation of PGD2 interfered with dimerization in the cytosol, thus allowing accessibility of the C-terminal peroxisomal targeting signal (PTS1). Notably, we identified amino-acid positions that are conserved among plant PGD homologs, with PTS1 motifs first appearing in ferns, suggesting a functional link to fertilization during the evolution of seed plants.

3.
Front Nutr ; 10: 1101479, 2023.
Article in English | MEDLINE | ID: mdl-36824169

ABSTRACT

So-called meat hybrids are a new class of products where a fraction of the meat product (e.g., 20%) is replaced with alternative protein sources, such as plant-based ones. Research suggests that these products could serve as a low-threshold offer for a specific target group that wants to cut down on meat, thereby facilitating the transition toward a more healthy and sustainable diet. Nonetheless, data demonstrate that meat hybrids with a high substantial meat substitution level often fail in the market. This study summarises findings on the physicochemical properties, sensory, and acceptance of six different meat hybrids (70% meat and 30% plant proteins) that were collected in the framework of a case study in the project AiF 196 EN. For this purpose, sensory characteristics were collected via two QDA sessions and a hedonic consumer test. Furthermore, the hybrid recipes were analysed in their proximate composition. The respective recipes varied in protein source (soybean, pumpkin, and pea) and mode of incorporation [textured vegetable protein (TVP), high moisture extrudate (HME)]. It was shown that a meat hybrid with a relatively high share of 30% plant-based proteins with peas as a protein source and TVP as a processing method can still attract consumers.

4.
Foods ; 11(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35804687

ABSTRACT

Microalgae are considered a promising resource of proteins, lipids, carbohydrates, and other functional biomolecules for food and feed markets. Competitive drying solutions are required to meet future demands for high-quality algal biomass while ensuring proper preservation at reduced costs. Since often used drying methods, such as freeze or spray drying, are energy and time consuming, more sustainable processes remain to be developed. This study tested an indirect and hybrid solar dryer as an alternative to conventional freeze drying of industrially produced Tetraselmis chui and Nannochloropsis oceanica wet paste. The effects of the drying method on biomass quality parameters, including biochemical profiles, functional properties, and microbial safety, were assessed. No significant differences were found between the applied drying technologies for total proteins, carbohydrates, lipids, and fatty acid profiles. On the other hand, some pigments showed significant differences, displaying up to 44.5% higher contents in freeze-dried samples. Minor differences were also registered in the mineral profiles (<10%). Analyses of microbial safety and functional properties of the solar-dried biomass appear adequate for food and feed products. In conclusion, industrial solar drying is a sustainable technology with a high potential to preserve high-quality microalgal biomass for various markets at expected lower costs.

5.
Eur Food Res Technol ; 248(7): 1777-1786, 2022.
Article in English | MEDLINE | ID: mdl-35317084

ABSTRACT

The global market for seafood alternatives is witnessing an exponential growth. Nevertheless, the nutritional quality of such products is scarcely studied. Thus, this study aimed to evaluate, for the first time, the nutritional quality of seafood alternatives launched in the global market from 2002 to 2021 and to compare them with the conventional seafood products. Using the Mintel Global New Products Database, the nutritional information of seafood alternatives (i.e., tuna, shrimps, calamari, fish fingers, fish sticks, salmon, caviar, and fillet) was retrieved, and compared with conventional products. A total of 149 seafood alternatives were identified, of which 83 items had complete mandatory nutritional labeling. Conventional products (n = 973) were also collected, from which 130 products have a complete nutritional labeling. Results revealed that tuna, shrimps, caviar and fillet alternatives contained significantly less protein than conventional products, while calamari, fish fingers, fish sticks and salmon alternatives had similar amounts to their conventional counterparts. Salt content was significantly higher in tuna, fish fingers and sticks substitutes, but lower in shrimps, calamari and caviar alternatives compared to conventional products. Overall, the commercially available seafood alternatives have nutritional strengths and some shortcomings to be further addressed in future research such as low protein content. Additionally, fortification of seafood alternatives with micronutrients, such as omega-3 fatty acids and vitamins (A, B, and D), should be considered to ensure a nutritional equivalence with the conventional products. Supplementary Information: The online version contains supplementary material available at 10.1007/s00217-022-04004-z.

6.
J Food Sci ; 87(4): 1731-1741, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35257380

ABSTRACT

The increasing use of wet texturized plant proteins as meat substitutes requires a characterization of their functional properties, especially in terms of pH-behavior when being mixed with meat proteins to create so-called hybrid products. In this study, a minced model system containing pork meat, curing salt, and various amounts (0-100 wt%) of wet extruded proteins from pea (Pea I, II), pumpkin (Pumpkin I, II, III), and sunflower was used to evaluate the effect of mixing on pH and time-dependent pH-changes upon the addition of glucono-delta-lactone (GDL). Increasing concentrations of plant extrudates resulted in a linear increase of the initial (pH0h ), intermediate (pH6h ), and final pH48h for all samples and higher slopes at higher native pH of extrudates were found. Acidification kinetics of all samples were similar with a distinct pH-drop by 0.3 to 0.8 pH-units per wt% GDL in the first 6 h, followed by a plateau where pH remained constant. At extrudate concentrations of 5 wt% (Pea I, II, Pumpkin I, II) or 15 wt% (Pumpkin III, Sunflower), a sufficient acidification with typically used GDL-amounts ( = 1 wt%) could be achieved, while higher plant protein contents required higher GDL-concentrations in order to reach a pH value of 5.0; a common target value in dry-cured sausages. A mathematical model was proposed to correlate pH, time, acidifier, extrudate concentration, and plant protein origin, to aid in the adjustment of dry-cured hybrid meat formulations, and to describe thresholds of the feasible extrudate and acidifier concentrations. PRACTICAL APPLICATION: Despite the increasing relevance of texturized plant proteins as meat mimetics, little is known about their functional and process-related properties. This study shows that plant protein origin, the level of meat replacement, and the amount of acidifier are linked to the time-dependent pH-value on the basis of a mathematical model. This brings food developers one step closer in creating tailored formulations and estimating the effects of these novel ingredients in the final product characteristics of hybrid meats and analogues.


Subject(s)
Meat Products , Pork Meat , Red Meat , Animals , Hydrogen-Ion Concentration , Plant Proteins , Swine
7.
J Sci Food Agric ; 102(3): 1021-1029, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34312871

ABSTRACT

BACKGROUND: The use of plant proteins as food ingredients might be limited due to the presence of foreign or 'off' flavors, which may evolve during extraction and subsequent processing. In this study, the influence of dry (TVP) and wet (WTP) texturization on characteristic volatile compounds of two different pea protein isolates was assessed using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) after direct immersion stir bar sorptive extraction (DI-SBSE). RESULTS: Twenty-four odor-active compounds were found, with a prevalence of carbonyls from fat oxidation. Nine of these compounds which are also known as major (off-) flavor contributors in peas were distinctively impacted in all texturates: hexanal, nonanal, 2-undecanone, (E)-2-octenal, (E, Z)-3,5-octadiene-2-one, (E, E)-2,4-decadienal, 2-pentyl-furan, 2-pentyl-pyridine, and γ-nonalactone. For example, hexanal, a characteristic green odorant, was reduced by up to sixfold by wet texturization, from 3.29 ± 1.05% (Pea Protein I) to 0.52 ± 0.02% (Pea WTP I). Furthermore, (E,Z)-3,5-Octadiene-2-one and (E,E)-2,4-decadienal were decreased by 1.5- and 1.8-fold when Pea Protein I and Pea TVP I were compared. CONCLUSION: An overall reduction in fat oxidation products and of green and fatty odor-active compounds was observed. The results represent a first insight into the process-related modulation of pea protein (off-) flavors to broaden the applicability of pea proteins as food ingredients.


Subject(s)
Odorants/analysis , Pea Proteins/chemistry , Pea Proteins/isolation & purification , Pisum sativum/chemistry , Solid Phase Extraction/methods , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Fats/chemistry , Flavoring Agents/chemistry , Flavoring Agents/isolation & purification , Gas Chromatography-Mass Spectrometry , Oxidation-Reduction
8.
Food Res Int ; 150(Pt B): 110803, 2021 12.
Article in English | MEDLINE | ID: mdl-34863495

ABSTRACT

There is an increasing demand to develop and characterize high moisture extrudates from alternative plant proteins due to their increased use in various foods. In this study, wet texturized proteins from two pea isolates and four oilseed flours from pumpkin and sunflower were subjected to an acid titration to gain insights into their buffering capacity. Results were compared to pork meat with a special emphasis on compositional differences. Wet texturized pumpkin and sunflower proteins had the highest buffering capacity, especially in between pH7.0 and pH4.5, while pea protein extrudates and pork meat were more prone to acidification and similar in buffering capacity. A multiple linear regression model further revealed that ash and select minerals and amino acids are key influencing factors on the overall buffering capacity, while the effect of protein and non-protein nitrogen depends on the evaluated pH-regime. The obtained results underline the importance for a more in-depth physicochemical characterization of texturized plant proteins and their raw materials and suggest a need for recipe and process adjustment to achieve stable pH values.


Subject(s)
Pork Meat , Red Meat , Animals , Chemical Phenomena , Flour , Plant Proteins , Swine
9.
Plant Cell ; 32(5): 1703-1726, 2020 05.
Article in English | MEDLINE | ID: mdl-32111666

ABSTRACT

Studies on Glucose-6-phosphate (G6P)/phosphate translocator isoforms GPT1 and GPT2 reported the viability of Arabidopsis (Arabidopsis thaliana) gpt2 mutants, whereas heterozygous gpt1 mutants exhibited a variety of defects during fertilization/seed set, indicating that GPT1 is essential for this process. Among other functions, GPT1 was shown to be important for pollen and embryo-sac development. Because our previous work on the irreversible part of the oxidative pentose phosphate pathway (OPPP) revealed comparable effects, we investigated whether GPT1 may dually localize to plastids and peroxisomes. In reporter fusions, GPT2 localized to plastids, but GPT1 also localized to the endoplasmic reticulum (ER) and around peroxisomes. GPT1 contacted two oxidoreductases and also peroxins that mediate import of peroxisomal membrane proteins from the ER, hinting at dual localization. Reconstitution in yeast (Saccharomyces cerevisiae) proteoliposomes revealed that GPT1 preferentially exchanges G6P for ribulose-5-phosphate (Ru5P). Complementation analyses of heterozygous +/gpt1 plants demonstrated that GPT2 is unable to compensate for GPT1 in plastids, whereas GPT1 without the transit peptide (enforcing ER/peroxisomal localization) increased gpt1 transmission significantly. Because OPPP activity in peroxisomes is essential for fertilization, and immunoblot analyses hinted at the presence of unprocessed GPT1-specific bands, our findings suggest that GPT1 is indispensable in both plastids and peroxisomes. Together with its G6P-Ru5P exchange preference, GPT1 appears to play a role distinct from that of GPT2 due to dual targeting.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Monosaccharide Transport Proteins/metabolism , Peroxisomes/metabolism , Plastids/metabolism , Alleles , Amino Acids/metabolism , Antiporters/chemistry , Arabidopsis Proteins/chemistry , Cytosol/metabolism , Fertilization , Glucose-6-Phosphate/metabolism , Models, Biological , Monosaccharide Transport Proteins/chemistry , Ovule/metabolism , Oxidation-Reduction , Phylogeny , Protein Domains , Protein Multimerization , Protein Transport , Ribulosephosphates/metabolism , Seeds/metabolism , Stress, Physiological
10.
Foods ; 10(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396444

ABSTRACT

High levels of meat consumption are increasingly being criticised for ethical, environmental and social reasons. Plant-based meat substitutes have been identified as healthy sources of protein that, in comparison to meat, offer a number of social, environmental and health benefits and may play a role in reducing meat consumption. However, there has been a lack of research on the role they can play in the policy agenda and how specific meat substitute attributes can influence consumers to partially replace meat in their diets. This paper is focused on consumers' preferences for so-called meathybrid or plant-meathybrid products. In meathybrids, only a fraction of the meat product (e.g., 20% to 50%) is replaced with plant-based proteins. Research demonstrates that in many countries, consumers are highly attached to meat and consider it as an essential and integral element of their daily diet. For these consumers that are not interested in vegan or vegetarian alternatives as meat substitutes, meathybrids could be a low-threshold option for a more sustainable food consumption behaviour. In this paper, the results of an online survey with 500 German and 501 Belgian consumers are presented. The results show that more than fifty percent of consumers substitute meat at least occasionally. Thus, about half of the respondents reveal an eligible consumption behaviour with respect to sustainability and healthiness, at least sometimes. The applied discrete choice experiment demonstrated that the analysed meat products are the most preferred by consumers. Nonetheless, the tested meathybrid variants with different shares of plant-based proteins took the second position followed by the vegetarian-based alternatives. Therefore, meathybrids could facilitate the diet transition of meat-eaters in the direction toward a more healthy and sustainable consumption. The analysed consumer segment is more open-minded to the meathybrid concept in comparison to the vegetarian substitutes.

11.
J Exp Bot ; 71(3): 823-836, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31641750

ABSTRACT

Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.


Subject(s)
Arabidopsis/enzymology , Carboxylic Ester Hydrolases/metabolism , Peroxisomes/enzymology , Arabidopsis/genetics , Carboxylic Ester Hydrolases/genetics , Isoenzymes/metabolism , Solanum lycopersicum/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...